Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide.

نویسندگان

  • Guifeng Li
  • Vincent Sichula
  • Ksenija D Glusac
چکیده

We present a study of excited-state behavior of reduced flavin cofactors using femtosecond optical transient absorption spectroscopy. The reduced flavin cofactors studied were in two protonation states: flavin-adenine dinucleotide (FADH2 and FADH-) and flavin-mononucleotide (FMNH2 and FMNH-). We find that FMNH- exhibits multiexponential decay dynamics due to the presence of two bent conformers of the isoalloxazine ring. FMNH2 exhibits an additional fast deactivation component that is assigned to an iminol tautomer. Reduced flavin cofactors also exhibit a long-lived component that is attributed to the semiquinone and the hydrated electron that are produced in photoinduced electron transfer to the solvent. The presence of adenine in FADH2 and FADH- further changes the excited-state dynamics due to intramolecular electron transfer from the isoalloxazine to the adenine moiety of cofactors. This electron transfer is more pronounced in FADH2 due to pi-stacking interactions between two moieties. We further studied cyclobutane thymine dimer (TT-dimer) repair via FADH- and FMNH- and found that the repair is much more efficient in the case of FADH-. These results suggest that the adenine moiety plays a significant role in the TT-dimer repair dynamics. Two possible explanations for the adenine mediation are presented: (i) a two-step electron transfer process, with the initial electron transfer occurring from flavin to adenine moiety of FADH-, followed by a second electron transfer from adenine to TT-dimer; (ii) the preconcentration of TT-dimer molecules around the flavin cofactor due to the hydrophobic nature of the adenine moiety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoselected electron transfer pathways in DNA photolyase.

Cyclobutane dimer photolyases are proteins that bind to UV-damaged DNA containing cyclobutane pyrimidine dimer lesions. They repair these lesions by photo-induced electron transfer. The electron donor cofactor of a photolyase is a two-electron-reduced flavin adenine dinucleotide (FADH(-)). When FADH(-) is photo-excited, it transfers an electron from an excited pi --> pi* singlet state to the py...

متن کامل

The Aer protein of Escherichia coli forms a homodimer independent of the signaling domain and flavin adenine dinucleotide binding.

In vivo cross-linking between native cysteines in the Aer receptor of Escherichia coli showed dimer formation at the membrane anchor and in the putative HAMP domain. Dimers also formed in mutants that did not bind flavin adenine dinucleotide and in truncated peptides without a signaling domain and part of the HAMP domain.

متن کامل

Temperature-sensitive photoreactivation of cyclobutane thymine dimer in soybean.

UV radiation induces the formation of two classes of photoproducts in DNA, the cyclobutane pyrimidine dimer (CPD) and the pyrimidine 6-4 pyrimidone photoproduct. CPDs in plants are repaired by class II CPD photolyase via a UV-A/blue light-dependent mechanism. The genes for the class II CPD photolyase have been cloned from higher plants such as Arabidopsis, Cucumis sativus (cucumber), Oryza sati...

متن کامل

A Novel Approach to Simulate a Charge Transfer in DNA Repair by an Anacystis nidulans Photolyase

An Anacystis nidulans photolyase enzyme containing two chromophore cofactors was simulated for a photoreaction DNA repairing process via molecular dynamics (MD) method. A novel approach has been introduced for the electron transfer between the FAD (flavin adenine dinucleotide; flavin) molecule and CPD (cyclobutane pyrimidine dimer). This approach involves four simulation stages with different c...

متن کامل

Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.

Cryptochromes use near-UV/blue light to regulate a variety of growth and adaptive process. Recent biochemical studies demonstrate that the Cryptochrome-Drosophila, Arabidopsis, Synechocystis, Human (Cry-DASH) subfamily of cryptochromes have photolyase activity exclusively for single-stranded cyclobutane pyrimidine dimer (CPD)-containing DNA substrate [Selby C, Sancar A (2006) Proc Natl Acad Sci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 34  شماره 

صفحات  -

تاریخ انتشار 2008